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Abstract The increasing availability of remotely sensed

data offers a new opportunity to address landslide hazard

assessment at larger spatial scales. A prototype global

satellite-based landslide hazard algorithm has been devel-

oped to identify areas that may experience landslide activity.

This system combines a calculation of static landslide sus-

ceptibility with satellite-derived rainfall estimates and uses a

threshold approach to generate a set of ‘nowcasts’ that

classify potentially hazardous areas. A recent evaluation of

this algorithm framework found that while this tool repre-

sents an important first step in larger-scale near real-time

landslide hazard assessment efforts, it requires several

modifications before it can be fully realized as an operational

tool. This study draws upon a prior work’s recommendations

to develop a new approach for considering landslide sus-

ceptibility and hazard at the regional scale. This case study

calculates a regional susceptibility map using remotely

sensed and in situ information and a database of landslides

triggered by Hurricane Mitch in 1998 over four countries in

Central America. The susceptibility map is evaluated with a

regional rainfall intensity–duration triggering threshold and

results are compared with the global algorithm framework

for the same event. Evaluation of this regional system sug-

gests that this empirically based approach provides one

plausible way to approach some of the data and resolution

issues identified in the global assessment. The presented

methodology is straightforward to implement, improves

upon the global approach, and allows for results to be

transferable between regions. The results also highlight

several remaining challenges, including the empirical nature

of the algorithm framework and adequate information for

algorithm validation. Conclusions suggest that integrating

additional triggering factors such as soil moisture may help

to improve algorithm performance accuracy. The regional

algorithm scenario represents an important step forward in

advancing regional and global-scale landslide hazard

assessment.
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Introduction

Landslide hazards generate more economic losses and

fatalities than is generally acknowledged, due in large part
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to the reality that most casualties from landslide disasters

occur in the developing world (Guzzetti et al. 1999). In

such areas, complex topographic, lithologic, and vegetation

signatures coupled with heavy rainfall events can lead to

extensive mass wasting. Recent examinations of rainfall-

induced landslides have increased understanding of the

triggering mechanisms and surface conditions underlying

slope instability. However, investigations remain largely

site-specific and rely on high-resolution surface observable

data, in situ rainfall gauge information and detailed land-

slide inventories. Such information is frequently unavail-

able at larger spatial scales due to spatial and temporal

heterogeneities in surface information, rainfall gauge net-

works, and sparse landslide inventories.

The increasing availability of remotely sensed surface

and atmospheric data offers a new opportunity to address

landslide hazard assessment at larger spatial scales. A

preliminary global landslide hazard algorithm developed

by Hong et al. (2006, 2007) seeks to identify areas that

exhibit a high potential for landslide activity by combining

a calculation of landslide susceptibility with satellite-

derived rainfall estimates. The algorithm framework is

currently running at a 0.25� 9 0.25� spatial resolution and

outputs a set of landslide ‘nowcasts’ that can be compared

with landslide inventories to assess algorithm performance.

In this study, the authors define an algorithm ‘nowcast’ as a

near real-time estimate of landslide event occurrence,

highlighting the potential for landslide activity over a

defined area. The algorithm considers all rapidly occurring

mass movement types (e.g. landslides, debris flows, mud-

slides) that are directly triggered by rainfall.

Kirschbaum et al. (2009a) compares the prototype

‘nowcast’ algorithm framework with a global catalog of

landslide events. The research concludes that the chief

limitations of this system stem from the coarse spatial

resolution and weighting scheme used in developing the

susceptibility map and the global rainfall intensity–dura-

tion threshold employed. To improve the performance

accuracy and utility of this system, the study recommends

that the landslide hazard algorithm be considered at the

regional level.

This research draws on the algorithm evaluation and

recommendations described in Kirschbaum et al. (2009a)

to develop one approach to estimating regional suscepti-

bility and hazard assessment using satellite and in situ

surface data and detailed landslide event information. The

regional investigation draws upon a large landslide inven-

tory obtained from Hurricane Mitch, which affected several

countries in Central America in 1998. This case study

integrates a statistically derived landslide susceptibility

map with a regionally based intensity–duration threshold to

provide one plausible approach for enhancing near real-

time algorithm ‘nowcasts’. This paper introduces the

framework, methodology, and setting for the regional

landslide algorithm investigation. A new regional suscep-

tibility map is presented and rainfall triggering threshold

relationships are tested against previous work. The authors

compare the regional case study framework to the existing

global algorithm for the Hurricane Mitch event. Remaining

issues and potential improvements are discussed.

Satellite-based landslide hazard algorithm

The intensity of rainfall over short time periods can serve

as a triggering mechanism by increasing the pore water

pressures. This is due to an increase in the ground water

levels or the formation of perched water tables within the

unsaturated zone (Wieczorek 1996; Iverson 2000). His-

torically, this triggering relationship has been derived

empirically using information on the duration and intensity

of a rainfall event that triggered a landslide. Rainfall

intensity–duration (I–D) thresholds have been calculated

on global (Caine 1980; Hong et al. 2006; Guzzetti et al.

2008) to local scales (Larsen and Simon 1993; Ahmad

2003) and specify a lower rainfall threshold for when a

mass movement may be triggered.

To identify ‘nowcast’ areas of potential landslide

activity, the algorithm couples a static susceptibility map

with a rainfall I–D curve, assigning minimum thresholds

for susceptibility and rainfall values at specified temporal

durations. If a pixel has a susceptibility index value greater

than the defined threshold and the rainfall accumulation

exceeds the I–D threshold value, then an algorithm ‘now-

cast’ is issued. This approach is intended to provide a

regional to global perspective for near real-time landslide

hazard assessment. The optimum scale at which the algo-

rithm nowcasts are intended to be utilized extends over

areas larger than 2,500 km2. These scales are currently

limited by the coarsest data inputs, namely the

0.25� 9 0.25� Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA)

product (Huffman et al. 2007). Higher resolution surface

data is also employed to calculate the static susceptibility

values. The algorithm framework is outlined in Fig. 1.

Global framework

The global algorithm framework uses a global landslide

susceptibility map, which was calculated using several

remotely sensed and surface products. Shuttle Radar

Topography Mission (SRTM) data at a 3 arc-second

(*90 m) resolution is used to derive topographic parame-

ters including elevation, slope, and drainage density (Rabus

et al. 2003). Other products include 1-km Moderate Reso-

lution Imaging Spectroradiometer (MODIS) land cover
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(Friedl et al. 2002), and 0.25�–0.5� resolution soil charac-

teristics information (FAO/UNESCO 2003; Batjes 2000).

Each product is aggregated or interpolated from its base

spatial resolution to 0.25� 9 0.25�. Soil type (classification

of soil clay mineralogy, soil depth, moisture capacity, etc.),

soil texture (percentage of sand, clay, and loam), and land

cover were assigned a qualitative weight derived from

previous literature. The six parameters chosen to estimate

susceptibility (slope, soil type, soil texture, elevation, land

cover, and drainage density) were normalized globally and

combined using a weighted linear combination approach.

The resulting global susceptibility map includes suscepti-

bility values ranging from 0 (low susceptibility) to 5 (high

susceptibility) (Hong et al. 2007) (Fig. 2).

Hong et al. (2006) developed an I–D threshold for the

global algorithm framework that utilizes satellite-based

TMPA rainfall information. This merged satellite product

provides precipitation estimates at 0.25� 9 0.25� resolu-

tion every 3 h from 50�N to 50�S. Forecasts from the

global algorithm are updated every 3 h.1

The global algorithm framework was evaluated using a

newly compiled global catalog for rainfall-triggered land-

slide events (Kirschbaum et al. 2009b). Landslide infor-

mation was obtained from online news reports, hazard

databases, and other credible sources. The landslide catalog

includes events from 2003, and 2007–2010 and generally

provides a minimum number of reported landslide events

worldwide due to influencing factors such as regional

reporting biases and accuracy of reports.

Evaluation of the global landslide hazard algorithm in

Kirschbaum et al. (2009a) identifies several limitations of

the existing system. First, all surface observables are

aggregated to a 0.25� resolution, which serves to strongly

decrease the strength of surface signals such as topography

or slope by averaging values over a large area. Second, the

susceptibility map incorporates two fairly coarse resolution

soil products, which serves to over-emphasize the soils

information and bias susceptibility values in many areas.

Third, the globally consistent rainfall threshold is shown to

under-estimate actual rainfall triggering conditions in many

environments. The paper also stresses the dearth of land-

slide inventory information for accurate and comprehen-

sive validation of the algorithm framework.

Kirschbaum et al. (2009a) outlines a set of recommen-

dations for improving algorithm performance. These

include consideration of surface data products at higher

spatial resolutions, employment of a more physically based

methodology for calculating susceptibility, and re-evalua-

tion of the rainfall intensity–duration threshold to better

account for regional climatology. The study emphasizes

that the validation efforts would be greatly enhanced by

using more detailed and comprehensive landslide inven-

tories and that this approach may be better suited for a

regional scale analysis.

Regional setting

Drawing upon the recommendations outlined in the global

evaluation, this paper presents a more statistically based

methodology for approaching the issue of regional land-

slide hazard assessment. This research selects study areas

in four Central American countries that were significantly

affected by Hurricane Mitch in November 1998. Hurricane

Mitch made landfall as a Category 1 hurricane (Saffir-

Simpson scale) on October 29, 1998 and moved across

northern Honduras before turning north to hit eastern

Guatemala. In its wake, it triggered hundreds of thousands

of landslides in Nicaragua, El Salvador, Honduras and

Guatemala, causing an estimated 18,800 fatalities and over

USD$14.8 billion in damages (EM-DAT 2008). Following

the hurricane, teams of landslide experts from the U.S.

Geological Survey (USGS) and others used multi-temporal

aerial photographs and field mapping to estimate the

locations and perimeter of over 24,000 landslides in

selected study areas over the four countries (Bucknam et al.

2001; Harp et al. 2002; Rodriguez et al. 2006; Devoli et al.

2007). The locations of the study areas and mapped land-

slides are shown in Fig. 3.

Previous studies have used portions of the Hurricane

Mitch landslide inventory for landslide susceptibility

Tropical Rainfall Measurement
Lithology

• Land cover   • Soil composition

Calculaon Methodologies
Weighted Linear Combination
Bivariate statistical analysis 

Surface Observables
•   •  

Index Threshold
Rainfall Intensity-

•  Nowcast issued if the SI threshold

  and rainfall I-D threshold are 

  exceeded

•  Nowcasts issued on pixel-by-pixel

  basis and highlight areas with 

  Index Map

SI  4 I  αD-β

3-hour coverage, 50°N – 50°S

Landslide Nowcasts

>_ >_

Fig. 1 Threshold-based landslide hazard ‘nowcast’ algorithm

framework

1 The near real-time algorithm nowcasts and the global landslide

catalogs are available at http://trmm.gsfc.nasa.gov/publications_dir/

potential_landslide.html.
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analysis at local scales, employing empirical, statistical,

and deterministic methodologies (Menéndez-Duarte et al.

2003; Coe et al. 2004; Guinau et al. 2005; Liao et al. 2011).

In this evaluation, the authors employ a more dynamic

approach at the regional scale to statistically model land-

slide susceptibility and hazard over the four affected

countries in order to provide a more spatially homogeneous

assessment. This study is intended to serve as a regional

investigation of landslide hazard assessment where the

climatology and geologic setting is fairly homogenous and

where the methodology is general enough to replicate in

other geographic regions.

Fig. 2 Global landslide

susceptibility map described in

Hong et al. (2007), with inset

maps showing global

susceptibility values for

a Central America, and

b Southeast Asia
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Fig. 3 Hurricane Mitch storm

track and mapped landslide

inventory study areas. The total

inventory contains over 24,000

landslides, covering a total

study area of 35,474 sq km. The

19 landslide events not

associated with Hurricane Mitch

(non-Mitch landslides) are

extracted from the global

landslide catalog described in

Kirschbaum et al. (2009b)
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The Hurricane Mitch landslide inventories are statisti-

cally evaluated with several satellite-based and in situ

surface observables to develop a regional landslide sus-

ceptibility map. The regional susceptibility map uses a

statistical methodology described below to integrate sur-

face observables into a 90-m resolution map. Surface

observables include a 90-m SRTM DEM, which was used

to derive elevation, slope, curvature (slope concavity), and

aspect (slope orientation). While this DEM was calculated

after the Hurricane Mitch event, the vertical error for the

SRTM system components has been found to be within the

range of any incident elevation changes caused by land-

slides (Farr et al. 2007). Land cover information was

obtained from the Central American Vegetation/Land

Cover Classification and Conservation Status dataset (1 km

resolution), developed by Proyecto Ambiental Regional de

Centroamerica/Central America Protected Areas Systems

(PROARCA/CAPAS 1998), and was re-classified into 10

classes based on a relative landslide susceptibility catego-

rization presented in Hong et al. (2007). Country-level

lithologic maps were obtained for each of the four coun-

tries, with a mapping scale of 1:100,000 for El Salvador

(SNET/MARN 2008), and 1:500,000 for Honduras (Wie-

czorek et al. 1998), Guatemala (Lira, personal communi-

cation), and Nicaragua (INTER 1995). The data were

divided into classes according to their lithologic charac-

teristics, rock type and age. Lithologic classes were

assigned using information on landslide distribution in a

selection of the mapped study areas and classification

guidelines from Nadim et al. (2006). Figure 4 provides a

TOPOGRAPHIC
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Fig. 4 Surface observable data,

binned categories, and

corresponding frequency ratio

values used in the regional

susceptibility evaluation.

Frequency ratio values

exceeding the black dashed line

(Fr = 1), suggests that as the

value diverges from 1, there is a

more pronounced relationship

between the landslide and total

pixel area
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listing of the surface observable datasets, category classi-

fications, and sources used in the regional susceptibility

evaluations.

Recent work by Guzzetti et al. (2008) and Nadim et al.

(2009) suggest that using a single global I–D threshold

does not account for diverse climatologies at the regional

level where rainfall signatures can vary greatly. As a result,

Guzzetti et al. (2008) proposes several different regional

I–D thresholds to more accurately resolve triggering rela-

tionships in climatologically similar geographic areas,

using a database of over 2,600 landslide events and several

hundred I–D thresholds from previous literature. The new

set of defined regional thresholds are consistently lower

than previous global thresholds, which Guzzetti et al.

(2008) attributes to the increased availability of data and

a more representative sample of events and thresholds

globally.

There are very few landslide events with a precise time

of landslide occurrence within the study area, and as a

result, a new landslide I–D threshold cannot be calculated

for the regional case study. As a substitute, the authors use

an I–D threshold calculated by Guzzetti et al. (2008) for

humid subtropical environments within the regional algo-

rithm framework. Figure 5 plots the global and regional

I–D curves used in the algorithm frameworks along with

additional examples of I–D curves at the global scale and in

climatologically similar regions. The regional I–D curve

for humid subtropical environments is considerably lower

than previous regional and global I–D thresholds, which

suggests that less rainfall may actually be required to

trigger a landslide in this area. This threshold may also be a

more realistic value for satellite rainfall products, which

tend to report lower rainfall intensities compared to surface

rain gauges.

Landslide susceptibility map

Methodology

As discussed above, and shown in Fig. 2, the global

landslide susceptibility map from Hong et al. (2007) is

based on a weighted linear combination method to calcu-

late susceptibility. This method assigns a weight to each

surface observable based on previous literature and sums

the results to create a composite map at 0.25� 9 0.25�
resolution.

The derivation of the regional susceptibility map differs

in two important respects from the global map of Hong

et al. (1) a statistically derived bivariate, grid-cell unit

technique is employed to estimate susceptibility using the

Hurricane Mitch landslide inventory dataset; and (2) sus-

ceptibility values are calculated based on 90-m to 1-km

data and are aggregated to the 1-km scale. To prepare the

susceptibility data, the landslide inventory vector files were

transformed into 90-m resolution grids using a maximum-

area transformation algorithm in a Geographic Information

System (GIS). The resulting grid files provide a binary

dataset where pixels equal to one denote areas with one or

more mapped landslides and pixels with a value of zero

indicate no mapped landslides. Each of the surface

observables was also transformed from their base resolu-

tion into 90-m grids using a resampling tool.

This study employs a frequency ratio methodology

described by Lee and Pradhan (2007) and Lee et al. (2007),

which considers each surface observable individually (e.g.,

slope), and classifies values into a set of defined bins (e.g.,

\5�, 5–10�, 10–15�). A frequency ratio value is calculated

for each bin as the percentage of landslide pixels in each

bin divided by the percentage of pixels within the study

area having the same bin values, written as:

Frcb ¼
Landslide areacb=Landslide areaT

Study areacb=Study areaT
ð1Þ

where Frcb is the frequency ratio value for each surface

observable or category c = (1, 2,…,m), at each bin b = (1,

2,…,n), and T is the total landslide or study area for the

surface observable. The numerical value of the frequency

ratio suggests that when Fr & 1, the percent of landslide

pixels is proportional to the total pixel area within the bin

and when the frequency ratio diverges from Fr = 1, there

is a more pronounced relationship between the landslide

and total pixel areas. Figure 4 provides a description of the
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Fig. 5 Rainfall intensity–duration graph for global curves: a Hong
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et al. (2008)—Regional for the global and regional algorithms,

respectively
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surface observable categories tested and their correspond-

ing frequency ratio values over the study area.

The frequency ratio values are calculated for each set of

surface observable bins and the values are summed on a

pixel-by-pixel basis to estimate landslide susceptibility

over the study area, shown as:

Susceptibility index SIð Þ ¼ Frfactor1 þ Frfactor2 þ � � �
þ FrfactorN ð2Þ

SI ¼
Xn

b¼1

Xm

c¼1

Frcb

where FrfactorN can be any combination of surface obser-

vable factors, with c = (1, 2,…,m) representing the number

of surface observables, and b = (1, 2,…,n) showing the

number of bins. For example, the SI for a pixel with a slope

between 25� and 30�, elevation between 1,500 and

1,750 m, south-facing aspect, convex slope in tropical

evergreen forest with a surficial alluvium lithology would

generate a SI value of 9.26. Fr values are shown in Fig. 4.

The numerical value of the Susceptibility Index varies

according to the number of surface observables considered;

however, high index values indicate an increased likeli-

hood of landslide occurrence and low values suggest that

the type of surface observables present are indicative of

low landslide frequency.

This methodology provides a straightforward calcula-

tion of susceptibility. The use of a grid-based technique

allows the frequency ratio approach to be applied at any

spatial scale. However, the methodology requires that

surface observable data have homogeneous coverage over

the study area and that there are adequate landslide

inventories. This methodology also tends to simplify the

relationship between surface observables and landslides

across the study area by generalizing their contribution so

that only one frequency ratio value describes the relation-

ship between a range of surface observable values in each

classified bin (e.g., one Fr value for elevations greater than

2,250 m) (Kojima et al. 2000). Despite the limitations, the

bivariate frequency ratio approach provides a clear, direct

comparison between landslide and non-landslide areas

using minimal processing time.

Frequency ratios were calculated for each of the six

surface observables and results were tested with the land-

slide inventories within each country. Sensitivity analysis

of individual as well as combinations of surface observ-

ables were tested with landslide inventory data over several

different study areas in the four countries. Results conclude

that all surface observable categories provide information

to improve the susceptibility calculations (Kirschbaum

2009). The susceptibility map was calculated at a 90-m

pixel resolution but was aggregated to 1 km using the

median value for easier integration into the algorithm

framework (Fig. 6).

The frequency ratio values were mapped from

numerical SI values to five susceptibility index classes

using a quantile-based categorization. The five classes

were defined from equal intervals (20%) on a receiver
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Fig. 6 Regional landslide

susceptibility map for Central

America using the frequency

ratio methodology. Global

susceptibility map shown in

bottom left inset
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operating characteristic (ROC) curve, explained below.

The authors found this categorization scheme to most

effectively maximize the true-positive rate (successful

nowcasts) while minimizing the false-positive rate (false

alarms) for each susceptibility index category. These

results are consistent with previous mapping schemes

(Dai et al. 2004; Can et al. 2005; Guzzetti et al. 2006a;

Lee et al. 2007). In addition, the five defined suscepti-

bility index classes range from Low (SI \ 4.5) to High

(SI [ 7.7) susceptibility.

Global versus regional susceptibility

Receiver operating characteristic evaluation is employed to

compare the relative success of the susceptibility maps for

the regional and global approaches. ROC analysis depicts

the tradeoff between successful hit rates (true-positives)

and false alarm rates (false-positives). The resulting ROC

curve graphs the cumulative true-positive rate against the

false-positive rate for a set of classifiers (Fawcett 2006).

Landslide and non-landslide pixels are extracted and

summed into equal interval bins. Rates are plotted cumu-

latively, with the true-positive rate (accurately resolved

landslide pixels) on the y-axis and the false-positive rate

(non-landslide pixels classified as landslides) on the x-axis.

The success of the susceptibility map is determined by

taking the area under the ROC curve (AUC), where an

AUC value of 1 indicates a perfect model fit and a value of

0.5 represents a fit indistinguishable from random

occurrence.

The susceptibility index values are compared for the

regional and global maps over the same area. Figure 7 plots

the ROC validation results for the study areas in each

country. The global susceptibility map has a fit barely

indistinguishable from random occurrence in many of the

study areas, whereas the regional model demonstrates

fairly robust model fits. Given that the regional suscepti-

bility map was calculated using the landslide inventory

data, it is not surprising that the regional ROC and AUC

results are higher than the global susceptibility map over

the same area. The ROC result for Nicaragua suggests that

susceptibility is difficult to characterize from the available

data. This may be a result of the small study area size in

this country or topographic heterogeneities that may not be

adequately resolved.

A confusion matrix is calculated for both the global

and regional susceptibility index maps using a threshold

of SI C 4 from the qualitative category descriptions. The

matrix includes calculations for the true-positive (TP),

true-negative (TN), false-positive (FP), and false-negative

Fig. 7 ROC validation

comparing results from this

study (black line) and the Hong

et al. (2007) global

susceptibility map (blue line)

over the study areas in

a Guatemala, b Honduras, c El

Salvador, and d Nicaragua. The

1:1 line (red line) represents a

model fit indistinguishable from

random occurrence. AUC

values are shown for each

country for the global (blue) and

regional (black) evaluations
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(FN) values, which can be used to compute several

statistics:

Probability of detection PODð Þ ¼ TP

TP + FP
ð3Þ

False alarm rate FARð Þ ¼ FP

N

Accuracy ¼ TPþ TN

P + N

N represents all of the negative nowcasts, P are all the

positive nowcasts, POD is the percentage of landslide

pixels that are successfully predicted by the susceptibility

map, FAR is the percentage of pixels defined as high

susceptibility where no landslides were documented, and

accuracy defines the percentage of susceptible and non-

susceptible pixels accurately identified by the susceptibility

map. The Cohen’s Kappa index (j) is used as a second

validation method, which accounts for model agreement by

chance and is therefore considered to be a more robust

statistical measure (Cohen 1960; Hoehler 2000). The

Kappa index computes the observed probability Pobs of

pixels accurately identified as landslide or non-landslide,

compared to the expected probability Pexp based on chance

assignment:

k ¼ Pobs � Pexp

1� Pexp

ð4Þ

Pobs = accuracy;

Pexp ¼
TPþ FPð Þ TPþ FPð Þ þ FPþ TNð Þ FNþ TNð Þ

N2

The j values for the relative level of agreement between

the two models have been subjectively classified in the

literature into five categories: slight (\0.2), fair (0.2–0.4),

moderate (0.4–0.6), substantial (0.6–0.8), and almost

perfect (0.8–1) (Landis and Koch 1977).

Both the global map and regional scenario were com-

pared at 0.01� resolution and results of the statistical

analysis are shown in Table 1. The regional POD is lower

than the global map, which is likely due to the fact that

some of the landslide events are mapped along the total

runout of the landslide and consequently are occasionally

mistaken for streams or rivers. When only landslide initi-

ation points are considered (information was only available

for Guatemala), the POD of the regional map increases to

86%. The lower POD values may also be a result of the

spatial resolution of the regional susceptibility map, which

is expected to produce a lower false alarm rate but also

possibly lower detection. Comparatively, the high POD of

the global map also results in a high FAR. One challenge in

comparing susceptibility maps at different spatial resolu-

tion is the issue of representation errors. Despite discrep-

ancies between the 0.25� and 0.01� resolution of the two

maps, comparing their results highlights some interesting

trends which are worth exploring.

Several studies have used Kappa indices to evaluate the

relationship between landslide susceptibility maps (Guz-

zetti et al. 2006b; Van Den Eeckhaut et al. 2006; Baeza

et al. 2009), noting values ranging from 0.53 to 0.87. While

the Kappa values cited here are lower than those of pre-

vious studies, the cited studies calculated and validated

their susceptibility maps over small areas, ranging from 40

to 200 km2, using 15 surface observables or more to

compute their susceptibility indices. Therefore these stud-

ies have expectedly better model fits compared to the

current evaluation, where the mapped landslide areas alone

cover over 35,000 km2. Despite the discrepancies in study

area size, the regional SI map falls into the ‘fair agreement’

category, which suggests that it has some statistical

significance.

Rainfall intensity–duration triggering threshold

With the exception of the I–D threshold developed by

Hong et al. (2006), nearly all previous rainfall thresholds

were derived from in situ rainfall gauge information. These

threshold relationships require sufficient knowledge on the

timing and precise amount of rainfall that accumulated

during the landslide event. This information is often chal-

lenging to obtain due to the spatial variability of rainfall

gauging stations and difficulties in attributing past land-

slides to specific rainfall events. To test applicability of the

Guzzetti et al. (2008) regional I–D threshold to landslide

events in Central America, available rainfall gauge infor-

mation is compared with TMPA satellite rainfall for sev-

eral landslide events within the four countries. Eighteen

reported landslides were identified from the global

Table 1 Evaluation statistics for the regional and global susceptibility maps, showing the average area under the ROC curve (AUC) values,

probability of detection, false alarm rate, accuracy, and Cohen’s Kappa index

Average

AUC (%)

Probability of

detection (POD) (%)

False alarm

rate (FAR) (%)

Accuracy (%) Cohen’s Kappa

index (j)

Regional susceptibility map 74 59 29 68 0.24

Global susceptibility map 57 81 64 45 0.09
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landslide inventory presented in Kirschbaum et al. (2009b)

in addition to six different landslide-affected areas from the

Hurricane Mitch dataset. Gauge and satellite rainfall sig-

natures were extracted for the storm events that were

believed to have triggered the landslides and results are

plotted according to the cumulative storm precipitation

(storm depth) and storm duration. Gauge information is

available for 14 of the 25 landslide events. Since it is

difficult to ascertain the exact timing of the slope failures

during Hurricane Mitch, the study assumes that the land-

slides were triggered in the latter portion the storm’s

passage.

Figure 8 plots the peak intensity and cumulative pre-

cipitation for each storm in order to resolve both the near-

instantaneous and longer term rainfall signatures. Results

are plotted with the global and regional I–D thresholds

used in the algorithm frameworks. Figure 8 illustrates that

the regional I–D threshold resolves significantly more

events than the global I–D curve. The landslide events

where the cumulative rainfall does not exceed the regional

threshold may be due to an underestimation of rainfall

intensities, particularly by the TMPA satellite rainfall;

inaccurate identification of the landslide time or location;

or other contributing factors to landslide initiation such as

antecedent moisture. These issues are discussed below.

Regional approach versus global algorithm evaluation

The global and regional algorithms were run retrospec-

tively from October 20 to November 8, 1998, representing

the window in which Hurricane Mitch impacted Central

America. The algorithm scenarios were run within the

Land Information System (LIS) platform, a NASA God-

dard Space Flight Center software framework with high

performance land surface modeling and data assimilation

capabilities (Kumar et al. 2006; Peters-Lidard et al. 2007).

Both the global and regional 1-day intensity–duration

thresholds were tested for each susceptibility map. 2 and

3-day I–D thresholds were also tested and were found to

have similar results. The global and regional algorithms

were run at 0.25� and 0.01� resolution, respectively, with

the TMPA rainfall data simply interpolated to 0.01� for the

regional trials. Landslide areas were calculated in 0.01�
grids, denoting pixels with at least one landslide in their

area. The resulting global algorithm forecasts were disag-

gregated to 0.01� resolution for more direct comparison

with the regional results. Figure 9 shows the algorithm

forecasts for the four different scenarios tested. An algo-

rithm nowcast is considered to be successful if the nowcast

and landslide pixel overlap. From this evaluation, a con-

fusion matrix was calculated for each of the tested sce-

narios (Table 2).

When the regional I–D threshold is applied to the

regional map (Fig. 9a) and global map (Fig. 9c), the POD

and FAR statistics are similar to that of the static suscep-

tibility map evaluation but produce higher Accuracy results

for the regional framework (Table 2). Comparatively,

when the global I–D threshold is applied to the regional

(Fig. 9b) and global (Fig. 9d) susceptibility maps, the POD

and FAR are significantly lower, due in part to the coarse

spatial resolution of the global framework. While the

Global I–D threshold actually produces a higher accuracy

value, the resulting forecasts have an extremely low POD

and Kappa Index value.

The two algorithm components were also evaluated

using events from the global landslide catalog described

above. Of the nine landslides identified within the four

countries, eight events fell within high susceptibility areas

in the global map and all nine events were categorized as

high susceptibility by the regional map. Comparatively,

only one event exceeded the global I–D threshold while

four events exceeded the regional I–D threshold. These

results suggest that the I–D threshold may be the most

significant limiting factor in the failure to accurately gen-

erate nowcasts within the algorithm framework and as a

result, should be more closely evaluated with other

empirical or modeled triggering relationships.

Discussion

The regional susceptibility map and intensity–duration

threshold were designed to present a feasible approach to

addressing near real-time landslide hazard assessment at
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Fig. 8 Storm depth (cumulative rainfall) versus duration graph

comparing rainfall totals for a selection of Hurricane Mitch and

non-Mitch landslide events in Central America. Rainfall signatures

are calculated from surface rainfall gauges (NCDC daily global

precipitation data; http://www.ncdc.noaa.gov/) and the TMPA prod-

uct (Huffman et al. 2007). The global and regional I–D thresholds are

plotted as cumulative rainfall versus storm duration
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the regional level. Due to the fact that only one extreme

event was considered for algorithm development, this

regional framework serves as one plausible scenario for

landslide hazard evaluation and is not representative of all

landslide-triggering rainfall events.

Comparison of the global and regional algorithm

frameworks suggests that the regionally focused input

parameters and I–D threshold may serve as a more realistic

approach to landslide ‘nowcasting’; however, there are

several additional factors that must be considered when

making a framework such as this operational. First,

obtaining adequate surface information including geologic,

geomorphologic, and hydrologic information is extremely

challenging. This issue is particularly relevant when the

analysis is performed over larger study areas, which

requires both comprehensive and consistent surface

observable data. This analysis assumes that each landslide-

controlling factor is mutually independent in the frequency

ratio analysis, yet in reality, this is not realistic and could

produce an overestimation of susceptibility and high

autocorrelation values, particularly in higher susceptibility

classes (Guinau et al. 2005).

A second issue with the susceptibility map is that the

calibration data was obtained from a single extreme rainfall

event. As a result, the susceptibility map may be biased

towards resolving specific landslide typologies (over 95%

of the Hurricane Mitch landslide inventory was reported as

shallow debris flow events) and topographic aspects

resulting from the storm’s directionality. Due to the

extreme nature of the hurricane rainfall, many slopes that

ordinarily remain stable during seasonal rainfall events

may have been preferentially affected by this event.

Potential biases in the landslide susceptibility map also

occur as a result of using the Hurricane Mitch inventory for

map calibration as well as validation. Kirschbaum (2009)

tested ten different groupings of the landslide study areas to
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Fig. 9 Comparison of

algorithm nowcasts for the

regional case study under four

scenarios: a regional

susceptibility with regional I–D

threshold, b regional

susceptibility with global I–D

threshold, c global susceptibility

with regional I–D threshold, and

d global susceptibility and

global I–D threshold. The four

maps plot results for the

Hurricane Mitch event,

displaying algorithm nowcasts

(black), high susceptibility area

from the regional or global

susceptibility index maps

(SI C 4; grey), and study areas

used for algorithm evaluation

(green)

Table 2 Algorithm nowcast results for the Hurricane Mitch case study using the global susceptibility map (Hong et al. 2007), regional SI map,

global I–D threshold (Hong et al. 2006) and regional I–D threshold (Guzzetti et al. 2008)

Susceptibility

index map

I–D threshold Probability of

detection (%)

False alarm

rate (%)

Accuracy (%) Cohen’s

Kappa index (j)

Regional Regional 58 28 69 0.24

Global 17 6 78 0.14

Global Regional 82 65 45 0.09

Global 33 20 71 0.13
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calibrate the susceptibility maps, choosing separate study

areas for validation. Results suggested that the AUC results

from each of the map tests vary by\6%, which the authors

determine is within an acceptable confidence range for the

regional results. Spatial autocorrelation of the susceptibility

map and Hurricane Mitch landslide inventory may also

represent a bias in the map calculation, which in some

cases is unavoidable.

A third challenge of the existing framework is the non-

physically based, empirical nature of the algorithm frame-

work, particularly with respect to the intensity–duration

threshold. Results shown in Fig. 8 demonstrate that Hurri-

cane Mitch had anomalously high rainfall intensities com-

pared to other rainfall-triggered landslide events recorded

over the same area. While the Hurricane Mitch rainfall sig-

natures exceeded the regional I–D threshold, only 4 of the 14

rainfall signatures exceed the global threshold for the TMPA

satellite data. Comparatively, only one non-Mitch landslide

exceeded the global I–D threshold and many events failed to

exceed even the regional threshold. While the I–D threshold

curves have been widely used in the literature, the purely

empirical curves lack a physical, hydrologically justifiable

basis, particularly when considered as the only triggering

component and over a large study area.

Research has indicated that slope stability may be

accurately computed at larger spatial scales by employing

more physically based soil mechanics methodologies

(Baum et al. 2010). The Transient Rainfall Infiltration and

Grid-based Regional Slope-stability Model (TRIGRS;

Baum et al. 2008) is designed to model the timing and

distribution of shallow, rainfall-induced landslides and has

been modified for larger-area applications and tested within

Macon County, North Carolina (Liao et al. 2011). Another

prototype physical model, SLope-Infiltration-Distributed

Equilibrium (SLIDE), has been tested over a 1,200 km2

area in Honduras and employs simplified hypotheses on

water infiltration to define a direct relationship between

factor of safety and the rainfall depth on an infinite slope

(Liao et al. 2010). While these model approaches are out-

side the scope of the current research due to algorithm

spatial scale and the dearth of detailed soils information, it

is an area of current investigation for smaller-area studies.

Results from the algorithm testing also indicate that the

I–D threshold chosen strongly dictates the algorithm haz-

ard assessment capability and is responsible for missed

algorithm nowcasts. The 1-day global I–D threshold mis-

sed nearly all the landslide events mapped in Guatemala, El

Salvador, and portions of Honduras. These missed events

may have resulted from the difficulty of TRMM data to

accurately resolve rainfall structures in areas influenced by

orography, which can lead to underestimations or misi-

dentification of rainfall in landslide-prone areas. However,

failure to resolve mapped landslide events may also be due

to the fact that a simplified cumulative satellite-derived

rainfall total does not adequately account for the hydro-

logic conditions influencing slope instability.

Many of the non-Mitch landslide reports noted that

some landslides occurred after the peak rainfall event,

suggesting that antecedent moisture plays an important role

in slope destabilization and must be incorporated into the

algorithm framework to provide more dynamic hydrologic

indicators. Studies have proposed several different models,

including a simple antecedent rainfall threshold curve

(Chleborad et al. 2006), an empirical Antecedent Daily

Rainfall Model (Glade et al. 2000), Antecedent Water

Status Model (Crozier 1999), and relationships to normal-

ized cumulative critical rainfall (Aleotti 2004), among

others. Work is underway to incorporate antecedent soil

moisture information into the algorithm.

A final challenge of the existing algorithm framework at

any level is to adequately account for exogenous factors

leading to increased surface instability. At present, the

algorithm framework does not account for landslides trig-

gered by seismic activity or anthropogenic impact. Tectonic

weakening of the hillslopes can destabilize the surface and

failure planes, increasing the potential for a landslide during

and subsequent to heavy rainfall events. Anthropogenic

impact on surface instability and landslide frequency is

somewhat more difficult to quantify due to the multifaceted

impact development can have on slopes. Road cuts, improper

building, and inadequate water drainage weakens surface

materials, which serve to increase shear stresses and slope

instability. While the completeness and accuracy of land-

slide inventories continues to be a limiting factor in algo-

rithm validation, integrating additional indicators such as

population density, proximity to road networks, and eco-

nomic fragility may help to better constrain locations where

populations may be at higher risk to landslide occurrences.

Despite the outlined challenges results suggest that the

regional investigation provides one plausible way to

approach some of the data and resolution issues identified

in the global assessment and, in this scenario, provides

more realistic landslide nowcasts. Applying this empirical

methodology over diverse regions is contingent on the

availability of landslide inventory information and consis-

tency of data products between regions. Remotely sensed

surface data offer the homogeneity, regional consistency,

and high spatial resolution necessary to make the described

methodology transferable to other regions. Regional

investigations may also build upon existing regional or

local investigations to evaluate susceptibility, possibly

using the global landslide catalog to relate landslide initi-

ation conditions amongst regions. Ensemble regional sus-

ceptibility index models as well as climatologically based

I–D thresholds may then be synthesized in order to develop

a new global algorithm framework.
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Conclusions

This study draws upon the recommendations outlined in

Kirschbaum et al. (2009a) to develop a regional approach

to near real-time hazard assessment, employing higher

resolution satellite and surface datasets and a statistically

derived methodology. The Hurricane Mitch case study

provides a valuable opportunity to apply the bivariate fre-

quency ratio methodology at the regional scale. Due to the

vast differences in their calculation methodologies and

landslide information, it is difficult to compare the global

and regional algorithm strategies directly. However, results

suggests that the overall accuracy of the regional map and

algorithm nowcasts demonstrate some statistical skill and

that the Kappa Index value for the regional approach are

within a realistic range compared to previous studies.

While the regional approach suggests that algorithm

performance accuracy may be improved when considering

landslide hazard at regional scales, several challenges must

be resolved in order to successfully apply the regional

framework in disparate areas and scale-up results to a new

global framework. These include landslide inventory

availability in other regions, re-evaluation of the intensity–

duration thresholds and inclusion of soil moisture as a

precursor to landslide initiation, and incorporation of more

physically based parameters that may better predict slope

instability. Future work will approach the issue of slope

stability from a mechanical perspective, testing the existing

empirical algorithm framework against deterministic infil-

tration models to determine how algorithm nowcast capa-

bilities may be improved.

Globally consistent rainfall information for accurate and

continuous monitoring of rainfall intensities is imperative

for improved system performance. Future missions such as

Global Precipitation Measurement (GPM; http://gpm.nasa.

gov/) and Soil Moisture Active & Passive (SMAP;

http://smap.jpl.nasa.gov/) set the stage for improved rapid

assessment of landslide prone areas through more accurate

and consistent precipitation and soil moisture status infor-

mation. These future products, along with many existing

global satellite datasets, provide the necessary tools to

advance the prototype algorithm framework and improve

near real-time landslide hazard assessment capabilities at

regional and global scales.
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